5 research outputs found

    Enabling technologies for precise aerial manufacturing with unmanned aerial vehicles

    Get PDF
    The construction industry is currently experiencing a revolution with automation techniques such as additive manufacturing and robot-enabled construction. Additive Manufacturing (AM) is a key technology that can o er productivity improvement in the construction industry by means of o -site prefabrication and on-site construction with automated systems. The key bene t is that building elements can be fabricated with less materials and higher design freedom compared to traditional manual methods. O -site prefabrication with AM has been investigated for some time already, but it has limitations in terms of logistical issues of components transportation and due to its lack of design exibility on-site. On-site construction with automated systems, such as static gantry systems and mobile ground robots performing AM tasks, can o er additional bene ts over o -site prefabrication, but it needs further research before it will become practical and economical. Ground-based automated construction systems also have the limitation that they cannot extend the construction envelope beyond their physical size. The solution of using aerial robots to liberate the process from the constrained construction envelope has been suggested, albeit with technological challenges including precision of operation, uncertainty in environmental interaction and energy e ciency. This thesis investigates methods of precise manufacturing with aerial robots. In particular, this work focuses on stabilisation mechanisms and origami-based structural elements that allow aerial robots to operate in challenging environments. An integrated aerial self-aligning delta manipulator has been utilised to increase the positioning accuracy of the aerial robots, and a Material Extrusion (ME) process has been developed for Aerial Additive Manufacturing (AAM). A 28-layer tower has been additively manufactured by aerial robots to demonstrate the feasibility of AAM. Rotorigami and a bioinspired landing mechanism demonstrate their abilities to overcome uncertainty in environmental interaction with impact protection capabilities and improved robustness for UAV. Design principles using tensile anchoring methods have been explored, enabling low-power operation and explores possibility of low-power aerial stabilisation. The results demonstrate that precise aerial manufacturing needs to consider not only just the robotic aspects, such as ight control algorithms and mechatronics, but also material behaviour and environmental interaction as factors for its success.Open Acces

    Rotorigami: A rotary origami protective system for robotic rotorcraft

    Get PDF
    Applications of aerial robots are progressively expanding into complex urban and natural environments. Despite remarkable advancements in the field, robotic rotorcraft is still drastically limited by the environment in which they operate. Obstacle detection and avoidance systems have functionality limitations and substantially add to the computational complexity of the onboard equipment of flying vehicles. Furthermore, they often cannot identify difficult-to-detect obstacles such as windows and wires. Robustness to physical contact with the environment is essential to mitigate these limitations and continue mission completion. However, many current mechanical impact protection concepts are either not sufficiently effective or too heavy and cumbersome, severely limiting the flight time and the capability of flying in constrained and narrow spaces. Therefore, novel impact protection systems are needed to enable flying robots to navigate in confined or heavily cluttered environments easily, safely, and efficiently while minimizing the performance penalty caused by the protection method. Here, we report the development of a protection system for robotic rotorcraft consisting of a free-to-spin circular protector that is able to decouple impact yawing moments from the vehicle, combined with a cyclic origami impact cushion capable of reducing the peak impact force experienced by the vehicle. Experimental results using a sensor-equipped miniature quadrotor demonstrated the impact resilience effectiveness of the Rotary Origami Protective System (Rotorigami) for a variety of collision scenarios. We anticipate this work to be a starting point for the exploitation of origami structures in the passive or active impact protection of robotic vehicles

    Aerial additive manufacturing with multiple autonomous robots.

    No full text
    Additive manufacturing methods1-4 using static and mobile robots are being developed for both on-site construction5-8 and off-site prefabrication9,10. Here we introduce a method of additive manufacturing, referred to as aerial additive manufacturing (Aerial-AM), that utilizes a team of aerial robots inspired by natural builders11 such as wasps who use collective building methods12,13. We present a scalable multi-robot three-dimensional (3D) printing and path-planning framework that enables robot tasks and population size to be adapted to variations in print geometry throughout a building mission. The multi-robot manufacturing framework allows for autonomous three-dimensional printing under human supervision, real-time assessment of printed geometry and robot behavioural adaptation. To validate autonomous Aerial-AM based on the framework, we develop BuilDrones for depositing materials during flight and ScanDrones for measuring the print quality, and integrate a generic real-time model-predictive-control scheme with the Aerial-AM robots. In addition, we integrate a dynamically self-aligning delta manipulator with the BuilDrone to further improve the manufacturing accuracy to five millimetres for printing geometry with precise trajectory requirements, and develop four cementitious-polymeric composite mixtures suitable for continuous material deposition. We demonstrate proof-of-concept prints including a cylinder 2.05 metres high consisting of 72 layers of a rapid-curing insulation foam material and a cylinder 0.18 metres high consisting of 28 layers of structural pseudoplastic cementitious material, a light-trail virtual print of a dome-like geometry, and multi-robot simulations. Aerial-AM allows manufacturing in-flight and offers future possibilities for building in unbounded, at-height or hard-to-access locations

    Aerial additive manufacturing with multiple autonomous robots

    No full text
    Additive manufacturing methods using static and mobile robots are being developed for both on-site construction and off-site prefabrication. Here we introduce a method of additive manufacturing, referred to as aerial additive manufacturing (Aerial-AM), that utilizes a team of aerial robots inspired by natural builders such as wasps who use collective building methods. We present a scalable multi-robot three-dimensional (3D) printing and path-planning framework that enables robot tasks and population size to be adapted to variations in print geometry throughout a building mission. The multi-robot manufacturing framework allows for autonomous three-dimensional printing under human supervision, real-time assessment of printed geometry and robot behavioural adaptation. To validate autonomous Aerial-AM based on the framework, we develop BuilDrones for depositing materials during flight and ScanDrones for measuring the print quality, and integrate a generic real-time model-predictive-control scheme with the Aerial-AM robots. In addition, we integrate a dynamically self-aligning delta manipulator with the BuilDrone to further improve the manufacturing accuracy to five millimetres for printing geometry with precise trajectory requirements, and develop four cementitious–polymeric composite mixtures suitable for continuous material deposition. We demonstrate proof-of-concept prints including a cylinder 2.05 metres high consisting of 72 layers of a rapid-curing insulation foam material and a cylinder 0.18 metres high consisting of 28 layers of structural pseudoplastic cementitious material, a light-trail virtual print of a dome-like geometry, and multi-robot simulations. Aerial-AM allows manufacturing in-flight and offers future possibilities for building in unbounded, at-height or hard-to-access locations
    corecore